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ABSTRACT: Gossip and broadcast protocols are 

two information transmission problems defined for 

a group of individuals connected by a 

communication network. When gossiping, all users 

of the network know one thing of information and 

need to communicate it to everyone else. When 

broadcasting, a source node wants to send a 

message to all other nodes. Both are some of the 

most fundamental problems that arise in 

communication networks. This work examined 

problems that produce gossip and broadcasting in 

general. For example, the source node can have 

multiple messages. Many of the related works 

examined in the literature focused on homogenous 

networks. The developed algorithms are more 

applicable to data management on local networks. 

However, large storage systems generally consist 

of storage devices assembled over a wide network. 

Finding an appropriate model and developing 

algorithms for transmission that recognize the 

multidimensional nature of the communication 

network is an important part of this study. 

Problems with data collection over an extensive, 

largely overlooked network were also addressed. It 

is likely to become more important as the Internet 

becomes more embedded in everyday life. We 

consider a situation where large volumes of data 

must be moved from several different locations to a 

destination. In this work, we focus on two main 

properties: the available bandwidth may vary and 

the network may not select the best route for 

transferring data between two hosts. We focus on 

optimizing task completion time by redirecting data 

through intermediate hosts and showing that, under 

certain network conditions, we can reduce the total 

completion time by a factor of two. This is done by 

developing an approach to coordinate schedules of 

data collection using network streams. 

communicates serially with a microprocessor. The 

microprocessor monitors and reports the engine’s 

performance and control the opening/closing of the 

engine valves. The ultimate goal is improved 

efficiency, decrease pollutants, and produce 

maximum power throughout the RPM range with a 

calmness engine. 
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I. INTRODUCTION 
Broadcasting and gossip are some of the 

most basic problems that arise in communication 

networks. In this thesis, we mainly deal with issues 

related to broadcasting and gossip that arise when 

managing large amounts of data. We study various 

issues that relate to the dissemination and 

collection of data both in local networks and in 

large areas. 

The issues of broadcasting and gossip 

have been studied for decades [66, 44, 48, 10, 11, 

51]. The diffusion problem is defined as follows: 

There are n nodes, and a source node must pass an 

element to any other node. In the gossip problem, 

each node has an element that they want to 

communicate to all the others. We can treat the 

problem of gossip as simultaneously making 

programs. Communication is usually done in 

rounds, where one node in each round can send (or 

receive) one item at most to another node. A 

typical objective function is to reduce the number 

of rounds of communication. In this thesis we use 

this objective function as a performance metric. 

Another typical objective function considered in 

the literature is to reduce the number of calls made. 

In order to correct the need for high data, 

in addition to high faults, we may want to keep 

multiple copies of the same file on some 

discrepancy. The disk usually has a storage limit 

and the number of users who can access the data 

from it at the same time. A data structure sets up 

how many copies of each file there should be, and 

what subset of disks it will display. Given the 

demand for data objects, it is difficult to compute 

an NP data model that maximizes the number of 

appeals [86, 39]. Golubchik et al. [39] developed a 

polynomial approximation equation for this 

problem. Let us first consider a simple and 

appealing example: suppose we have a collection 

of files stored on a disk at the beginning (this will 

be a repository) how we can do this model first? 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 2, Issue 11, pp: 177-184       www.ijaem.net                 ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-0211177184     | Impact Factor value 7.429   | ISO 9001: 2008 Certified Journal   Page 178 

Each item must be sent for a wrong order of pencil. 

In addition, we want to create output files as soon 

as possible, given the large volume of data 

involved. We call this problem only a multicast 

problem. (With multicast, we mean only one of the 

categories of the requested object.) This is a 

generalization to the single-source signal 

optimization problem by Cockayne, Thomason, 

and Farley [23, 29]. In some cases, product 

information is initially stored in multiple locations, 

and we also want to create a startup. We call this 

multicast problem. The problems of data migration 

are generalized to the three problems above, and a 

factor for estimation has been established. [59]. 

Another reason to investigate the issue of news 

media is because it is a key function of multimedia 

communication, such as MPI (Message Delivery) 

[77, 40, 52]. Broadcasting takes place when you 

need to quickly send data for processing across the 

network. This system makes it easy to see any 

multicast and multi-site multicast applications. We 

will present the problem as well as other general 

information 1.2.1. In the section. Remember that in 

some situations’ latency is important when sending 

small files. In other situations, bandwidth is the 

most important thing when making big changes. By 

solving the number of combinations, we solve two 

types of problems. 

Much of the work in the media and 

negatives in literature focuses on homogeneous 

participation. Algorithms are better developed for 

data management in regional centers. However, for 

large-scale systems, storage capabilities are 

typically spread across the network, where data 

transfer across the network is much slower than 

data transfer. from a regional perspective. 

Therefore, we plan to develop algorithms to create 

data files faster than traditional networks. 

 

II. RELATED WORK 

Broadcasting efficiently is an essential 

operation and many works are devoted to this 

under a number of communication models (see [81, 

44, 55, 9, 12] and references therein). For example, 

Elkin-Kortsarz [28] consider minimizing the 

broadcast time in arbitrarily connected graphs, with 

the property that only adjacent nodes in the graph 

may communicate. However, the approximation 

guarantee is ). The postal model [9] captures the 

communication latency when passing a message, 

and optimal broadcast algorithm was developed. 

The LogP model [24] suggests an alternative 

framework when dealing with nodes in a single 

cluster, and it captures both the communication 

latency and throughput in the network. 

Broadcasting algorithms [55] for the LogP model 

have been developed and shown to be optimal. 

However, all algorithms under the above models 

only work under homogeneous environment. 

Various models for heterogeneous 

environments have been proposed in the literature. 

One general model is the one proposed by Bar-Noy 

et al. [8] where the communication costs between 

links are not uniform. In addition, the sender may 

engage in another communication before the 

current one is complete. An approximation 

algorithm with a guarantee of O(logk) is given for 

the operation of performing a multicast of size k. 

Another simple model for heterogeneous networks 

of workstations was proposed by Banikazemi et al. 

[7]. In this model, heterogeneity among processors 

is modeled by a non-uniform speed of the sending 

processor. A heterogeneous cluster is defined as a 

collection of processors p1,p2,...,pn in which each 

processor is capable of communicating with any 

other processor. Each processor has a transmission 

time which is the time required to send a message 

to any other processor in the cluster. Thus, the time 

required for the communication is a function of 

only the sender. Each processor may send 

messages to other processors in order, and each 

processor may be receiving only one message at a 

time. They proposed a simple heuristic called the 

Fastest Node First (FNF) heuristic, which was 

studied further by Liu [73] and by Khuller and Kim 

[57, 62]. However, in this model it is assumed that 

the time taken by a processor to send a message to 

any other processor is the same. This is the main 

limitation of the model. 

Lowekamp and Beguelin [74] considered 

the same two-tier communication network model. 

Several works have been done to provide ways to 

deliver data by not following the default network 

route. Although some works exist on multipoint-to-

point aggregation mechanisms at the IP layer [5, 

17], such solutions have focused on reduction of 

overheads due to small packets (e.g., ACKs) and 

usually require the use of an active networks 

framework which is not currently widely deployed 

over the public Internet. Another approach is 

application-level re-routing, which is used to 

improve end-to-end performance, or provide 

efficient fault detection and recovery for wide-area 

applications. For instance, in [84] the authors 

perform a measurement-based study of comparing 

end-to-end round-trip time, loss rate, and 

bandwidth of default routing vs alternate path 

routing. Their results show that in 30% to 80% of 

the cases, there is an alternate path with 

significantly superior quality. Their work provides 

evidence for existence of alternate paths which can 

outperform default. 
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III. METHODOLOGY 
Suppose we have N disks and ∆ data 

items. The single-source multicast problem is 

defined asfollows: 

Single-source multicast. There are ∆ data items 

stored on a single disk (the source). We need to 

send data item ito a specified subset Di of disks. 

Figure 1.1 shows the initial and target layouts, and 

their corresponding Di’s for a single-source 

multicast instance when ∆ is 4. Our goal is to find a 

schedule using the minimum number of rounds, 

that is, minimizing the makespan, subject to the 

following communication model.Our algorithm 

consists of two phases. In the first phase, we make 

exactly b|Di|/2c copies for all items i. Once each 

item ihas b|Di|/2c copies, in second phase we can 

finish migrating one item at each round by copying 

from the current copies to the remaining b|Di|/2c 

disks in Di which have not received item ias yet and 

using the source disk to make another copy if |Di| is 

odd. 

 

Phase I. At the t-th round, we do the following. 

1. The source disk s creates a new copy for item t 

if t ≤ ∆. 

2. For items j (j < t), double the number of copies 

until the number of copies becomes b|Dj|/2c. 

In other words, if the current number of 

copies of item j is less than or equal to 2
dj−2

every 

disk having item j makes another copy of it so that 

the number of copies is doubled. Otherwise if the 

current number of copies of item j is 2
dj−1

, then 

only b|Dj|/2c−2
dj−1 

disks need to make copies (thus 

the number of copies of item j becomes exactly 

b|Dj|/2c)., 

 

 
Figure 3.1: An example of a single-source broadcast instance. 

 

It is easy to see that the second phase can 

be scheduled without conflicts as we deal with only 

one item in each round. For the first phase. For 

instance, if all Di are identical and include all disks 

(thus the problem is the same as single-source 

broadcast [23, 29]) and ∆ = 4, |Di| = 12 for each 

item i. At each round, the source disk makes a new 

copy. For other items, the numbers of copies are 

doubled if possible. Consider Round 4. Since there 

are four copies of item 1, only two copies need to 

be created to make |Di|/2 = 6 copies. For items 2 

and 3, we can double the number of copies, and a 
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new copy for item 4 is created by the source disk. 

Without loss of generality, we assume that |D1| ≥ 

|D2| ≥ ··· ≥ |D∆| (otherwise renumber the items). Let 

di be the largest index such that 2
di 

≤ |Di|. For 

example, if |Di| = 12, then di = 3. 

 

IV. RESULT AND DISCUSSION 
We prove that our algorithm uses at most ∆ more 

rounds than the optimal solution for single-source 

multicasting. Let us denote the optimal makespan 

of a migration instance I as C(I). 

Theorem 3.4.1 For any migration instance I, C(I) ≥ 

max1≤i≤∆(i+ blog|Di|c). 

Proof Consider the instance where there is no 

overlap among Di’s. After a disk in Di receives 

ifrom s for the first time, we need at least blog|Di|c 

more rounds to make all disks in Di receive ieven if 

s copies item iseveral times after the first copy. 

Therefore, C(I) ≥ max1≤i≤∆(f(i)+blog|Di|c) where 

f(i) is the round when Di receives the first copy 

from s. Because s can be involved in copying only 

one item at a time, f(i) =6 f(j) if i=6 j. Also copying 

the same item from s more than once during the 

first ∆ rounds will only increase f(i) of some sets. 

Therefore, C(I) can be minimized by choosing f(i) 

as a permutation of 1,...,∆. Now we show that 

max1≤i≤∆(f(i) + blog|Di|c) ≥ max1≤i≤∆(i+ 

blog|Di|c) for any permutation f(i). Suppose there is 

a set Di that f(i) =6 iwhen max1≤i≤∆(f(i) + 

blog|Di|c) is minimum. Let Di be the set which have 

the smallest f(i) among such sets. Then f(i) <iand 

there should be a Djsuch that j = f(i) and f(j) > j. 

Even if we exchange the order of two sets, the 

value does not increase because; 

max(f(i) + blog|Di|c,f(j) + blog|Dj|c) =f(j) + 

blog|Dj|c 

≥ max(j + blog|Dj|c,f(j) + blog|Di|c). Thus when f(i) 

= ifor all i, max1≤i≤∆(f(i) + blog|Di|c) is 

minimized. ut 

Lemma 3.4.2 The total makespan of our algorithm 

is at most max1≤i≤∆(i+ blog|Di|c) + ∆. 

Proof In phase I, Di receives ifrom s at the i-th 

round for the first time. Because the number of 

copies doubles until it reaches b|Di|/2c, the number 

of copies of item ireaches b|Di|/2c in i+ blog|Di|c 

rounds. Phase II takes at most ∆ rounds because we 

finish one item in each round. Therefore, the 

lemma follows.utCorollary 3.4.3 The total 

makespan of our algorithm is at most the optimal 

makespan plus ∆. 

Proof Follows from Lemma 3.4.1 and Lemma 

3.4.2. ut 

Theorem 3.4.4 We have a 2-approximation 

algorithm for the single-source multicasting 

problem. 

Proof Because ∆ ≤ max1≤i≤∆(i+ blog|Di|c), the 

algorithm is 2-approximation.tu 

 

V. CONCLUSION 
Broadcasting and gossiping problems 

resemble some of the data dissemination problems 

we considered. However, previous works have 

mainly concentrated on assuming two parties may 

exchange all the information they know in constant 

time, and assuming the underlying communication 

model is homogeneous. Our work addressed these 

assumptions, and provides a broadcasting 

algorithm that is more applicable on a wide-area 

network. Moreover, to collect data from a set of 

hosts in a large-scale public network like the 

Internet, we addressed two key problems: the 

available bandwidth can fluctuate, and the network 

may not choose the best route to transfer the data 

between two hosts. we considered the single-source 

multicast problem, where there is one source disk s 

that has all ∆ items and others do not have any item 

in the beginning, and we would like to send item 

ito disks in set Di. We developed an algorithm 

where Di can be an arbitrary subset of disks.  

 The number of rounds required by our 

algorithm is at most ∆ + OPT where OPT is the 

minimum number of rounds required for this 

problem. Our algorithm is obviously a 2-

approximation for the problem, since ∆ is a lower 

bound on the number of rounds required by the 

optimal solution. 
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